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INTRODUCTION
Inverse Heat Conduction Problems (IHCPs) have been ex-

tensively studied over the last 50 years. They have numerous
applications in many branches of science and technology. The
problem consists in determining the temperature and heat flux
at inaccessible parts of the boundary of a 2- or 3-dimensional
body from corresponding data – called ’Cauchy data’ – from ac-
cessible parts of the boundary. It is well-known that IHCPs are
illposed which means that small perturbations in the data may
cause large errors in the solution. The importance of inverse heat
conduction problems and appropriate solution algorithms are es-
tablished in numerous works (see, e.g. [1], [3], [5], [6] and the
references therein).

In this contribution we give an overview over our contri-
butions to multidimensional IHCP’s and indicate what computa-
tional results for which sort of problems we have obtained. In [4]
we have established the theoretical background for multidimen-
sional inverse heat conduction problems. The solutions of the
associated direct problem as well as the inverse problem are un-
derstood in weak sense (see [4]). This allows the Cauchy data
to be only from L2. The initial condition can be given or not.
In the latter case, our method is also able to identify the initial
temperature distribution.

In a 2d-setting our problem is indicated in Figure 1.

REGULARIZATION
The idea of our method is very simple: since the initial con-

dition v0 and the heat flux v1 = ∂u/∂N|S2 at the inaccessible part
Γ2 of the boundary are not known, we consider them as a con-
trol v = (v0,v1) to minimize the defect J0(v) = 1/2‖u(x, ·)|S1 −
ϕ(·)‖2

L2(S1) on the accessible part Γ1 of the boundary. On Γ0 and
Γ1 different kinds of boundary conditions may be imposed, e.g.
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Figure 1. PROBLEM SETTING

homogeneous Neumann boundary conditions on Γ0 and Dirichlet
boundary conditions at Γ1. The function ϕ represents the (mea-
sured) temperature data on Γ1. Here, we set Si = Γi × (0,T ], i =
0,1,2, where T > 0 is the final time.

In [4] we have proved the existence of the optimal control,
and also obtained the gradient of the defect functional by means
of an appropriate adjoint problem. Since the optimal control
problem is still unstable, we have to use a regularization method
for it.

We solve the underlying inverse problem by discretization
in combination with Tikhonov’s regularization using a zeroth or-
der penalty term as well as iterative regularization via an appro-
priate stopping rule. As the underlying operator we choose the
Neumann-to-Dirichlet mapping A : L2(Ω)× L2(S2) −→ L2(S1)
which maps the (unknown) initial function v0 and the heat flux
v1 = ∂u/∂N|S2 to u|S1 where u is the solution of the heat equa-
tion in weak form. The minimizing functional to determine
v = (v0,v1),
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Figure 2. IHCP ON A HALF RING

Jγ(v) =
1
2

(

‖Av−ϕ‖2
L2(S1)

+ γ2‖v‖2
L2(Ω)×L2(S2)

)

(1)

is differentiable with gradient J ′γ(v) = A∗(Av−ϕ)+γ2v which can
be obtained via the solution of an appropriate adjoint problem.

As an iterative algorithm to solve the minimization prob-
lem we use the Conjugate Gradient Method (CGM) in connec-
tion with an appropriate stopping rule. This is also called CGLS
(=conjugate gradient least square) in [8]. We allow perturbations
of the data, ‖ϕ−ϕε‖L2(S1) = O(ε), and the operator A is replaced
by Ah which is a finite element or finite difference approximation.

NUMERICAL EXAMPLES
Our program is based on a C++ code of C. Fröbel [7] where,

as a direct solver for the underlying parabolic problems, the Fi-
nite Element package DEAL [2] is used. For the inverse problem
calculations we use the Crank-Nicolson method for the time inte-
gration and the conjugate gradient method plus Tikhonov’s reg-
ularization to solve the minimization problem described above.
The direct solution of the parabolic problems with DEAL uses bi-
linear ansatz functions. Our computational results are discussed
in detail in [9].

As examples we consider an IHCP on a half ring (see Fig.
2) and on a rectangle (see Fig. 3).
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Figure 3. RECTANGLE WITH 33 GRID POINTS ON Γ1 and Γ2
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